Question:
Le NKS de Stephen Wolfram, une tentative d'explication de l'univers avec des automates cellulaires, est-il en conflit avec le théorème de Bell?
Gordon
2011-01-30 10:40:05 UTC
view on stackexchange narkive permalink

A New Kind of Science (NKS) de Stephen Wolfram a fait son entrée dans les librairies en 2002 avec un maximum de battage médiatique.Sa thèse est que les lois de la physique peuvent être générées par divers automates cellulaires - des programmes simples produisant de la complexité . De temps en temps (c'est-à-dire rarement), je regarde le blog NKS et cherche de nouvelles applications. Je ne vois rien que je considère significatif. Est-ce que quelqu'un est au courant des progrès de toute théorie physique résultant de NKS? Alors que les CA sont à la fois intéressants et amusants (John Conway, Game of Life), en tant que théorie de tout, je vois des problèmes. Les règles du générateur sont déterministes, et elles sont locales en ce que chaque état de cellule dépend de ses voisins immédiats. NKS est donc un modèle déterministe local de la réalité. Bell a montré que cela ne pouvait pas être le cas. Quelqu'un peut-il faire des commentaires sur CA?

Gerard 't Hooft a étudié des modèles inspirés des automates cellulaires pour la physique fondamentale. Vous trouverez peut-être certains de ses articles récents (et lisibles) sur http://arxiv.org/find/quant-ph/1/au:+Hooft_G/
"Le théorème de Bell exclut les variables cachées locales comme une explication viable de la mécanique quantique (bien qu'il laisse toujours la porte ouverte aux variables cachées non locales)."Ce sont ces variables cachées non locales qui ouvrent la porte à une explication CA de l'univers.Puisque la structure sous-jacente de l'espace-temps est inconnue, la distinction local / non local n'a pas de sens;il est tout à fait possible que des occurrences quantiques apparemment aléatoires, à la fois locales et non locales, soient liées de manière déterministe.La simple existence d'un enchevêtrement est un indice évident que tel est le cas.Tout est connecté.
Cinq réponses:
#1
+31
Ron Maimon
2012-01-20 02:13:30 UTC
view on stackexchange narkive permalink

Alors que NKS est sorti avec beaucoup de battage médiatique, et avec beaucoup de scepticisme de la part des scientifiques, les idées scientifiques ne sont pas complètement triviales. Je pense juste qu'ils ne sont pas fondamentaux pour la science de la physique (du moins pas comme nous le connaissons jusqu'à présent), ils sont plutôt fondamentaux pour la science de la biologie.

La principale découverte faite par Wolfram (bien qu'avec une confusion importante que je vais expliquer ci-dessous, et avec un précurseur extrêmement significatif dans le jeu de la vie de Conway) est qu'un simple automate cellulaire à 1 dimension dont les règles sont choisies au hasard aura une probabilité finie pas si petite d'être un ordinateur complet (dans le système de Wolfram, 2 des 128 possibilités). La preuve que le système qu'il a trouvé, la règle 110 dans sa terminologie, est en fait un ordinateur complet n'est venue que deux décennies plus tard, grâce au travail de pionnier de Cook (travaillant sous Wolfram). Mais cela justifie sa focalisation sur le système comme élément central de la science, car auparavant, on supposait souvent implicitement que pour obtenir une certaine complexité, il fallait la mettre à la main. Ce résultat est également présent dans le système de Conway, mais le travail de Wolfram est quelque peu complémentaire, car les flux d'informations dans les systèmes 1d rendent plus difficile l'imagination d'un ordinateur complet émergeant. Le fait qu'il le fasse de toute façon (bien que, comme le montre la construction de Cook, avec des temps de fonctionnement horribles, en raison de la difficulté de faire la navette d'informations sur de longues distances) est surprenant et notable.

Ce n'est pas si important pour la physique, car toute tentative de modéliser la physique avec des automates cellulaires devra être grossièrement non locale afin d'éviter le théorème de Bell. Ce n'est pas si invraisemblable aujourd'hui, étant donné l'holographie gravitationnelle, mais Wolfram a suggéré qu'il y aurait une correspondance directe entre les chemins de particules élémentaires locaux et les structures d'automates, et ces idées sont carrément impossibles et ont été exclues avant de les proposer, par le théorème de Bell. . Cela signifie que le chapitre de son livre traitant de la physique est complètement faux, et peut être ignoré.

Mais ce travail est important d'une manière complètement différente, c'est le fondement de la biologie!

(EDIT: Le nouveau livre de Chaitin fait quelques brefs commentaires sur NKS qui font écho aux principaux points biologiques ci-dessous. Je ne cribble pas Chaitin, son livre postdate ceci.)

Biologie et religion

L'aspect le plus déroutant du monde dans lequel nous nous trouvons est que nous sommes entourés d'appareils informatiques complexes qui ne sont pas de notre propre conception! À savoir nous-mêmes, d'autres personnes, des animaux, des plantes et des bactéries. Comment ces structures de calcul ont-elles été construites, alors que nous devons travailler assez dur pour fabriquer un ordinateur? Il semble qu'il y ait un casse-tête ici.

Le casse-tête a, dans le passé, été résolu en supposant qu'une sorte de magie mettait la vie sur Terre, une agence surnaturelle. Cette idée est clairement en contradiction avec les lois de la nature telles que nous les comprenons aujourd'hui, mais il est important de garder à l'esprit la réponse superstitieuse, car certains de ses éléments sont récupérables.

La réponse superstitieuse est que Dieu est descendu dans la soupe primordiale, et a mélangé les molécules pour faire la vie. La notion de Dieu n'est pas clairement définie dans les textes religieux, où la rigueur n'est pas la priorité absolue. Mais j'essaierai de donner une définition positiviste ci-dessous. Je trouve qu'en utilisant cette définition positiviste, qui ne mentionne rien de surnaturel, je peux traduire les pensées des gens religieux et donner un sens complet à ce qu'ils disent, alors que sinon cela ressemble juste à la diatribe de personnes délirantes souffrant de graves lésions cérébrales. .

Afin de discuter de la biologie de manière raisonnable, je crois qu'il faut comprendre ce point de vue religieux à fond, d'une manière logique positiviste, car il est important en biologie dans la même mesure qu'il est complètement sans importance en physique .

Dans un système complexe, tel que les structures sociales humaines, nous avons tendance à observer des modèles qui ne peuvent être attribués uniquement aux actions de personnes individuelles. Par exemple, la réforme protestante semble s'être produite en une seule fois, en l'espace de quelques décennies au début du XVIe siècle, où les réformateurs de l'Église étaient actifs et travaillaient pendant des siècles auparavant, avec très peu de succès. Qu'est-ce qui l'a fait? Ce n'était pas seulement Luther et Calvin, c'était aussi un réseau d'hommes d'affaires et de banquiers et de catholiques désenchantés. La découverte de l'Amérique était importante d'une certaine manière, tout comme l'expulsion des Juifs d'Angleterre. À mon avis, le plus important était l'édit du XIVe siècle interdisant l'usure des catholiques, qui empêchait la formation de la banque. Mais ce n'était clairement pas une cause, ni le travail d'une seule personne travaillant seule.

Lorsque nous voyons des phénomènes aussi complexes, il est raisonnable de les attribuer au fonctionnement d'une intelligence plus grande que l'intelligence de n'importe quel individu, et c'est l'intelligence du collectif. De même qu'une personne est un ensemble de neurones, dont aucun n'est responsable de son intelligence, la société est un ensemble d'individus, dont personne n'est responsable de tout ce que la société fait ou pense collectivement. Le modèle collectif est à bien des égards plus intelligent que l'individu - il contient des mémoires collectives, dans des traditions et des conventions, qui informent l'action individuelle de manière complexe.

La notion de dieu (g minuscule, comme Zeus, ou Mars) dans les cultures anciennes est le nom donné aux entités formées à partir d'actions humaines collectives. Elles sont nébuleuses, mais importantes, car la décision de partir en guerre ne peut être attribuée à personne en particulier, mais à une entité, le dieu de la guerre, formée de nombreux individus travaillant ensemble dans le but de former un collectif cohérent qui dirigera le société pour faire cette transition de phase de comportement qui va à la guerre. Identifier une notion de dieu, et définir explicitement les personnes travaillant pour ce dieu, leur fait prendre conscience du fait qu'elles travaillent comme des parties d'une machine, pas uniquement comme des acteurs individuels. De plus, cela peut les inciter à agir sans ordre direct d'un roi ou d'un prêtre, simplement par leur propre introspection, afin d'atteindre au mieux l'objectif.

La notion de dieu a été affinée quelque part en Inde ou L'Iran dans la notion de Dieu (majuscule G), à partir de laquelle les cultes Brahma et la religion abrahamique, et le zoroastrisme ont émergé. Cette notion suggère que le conflit entre dieux est similaire au conflit entre individus, les dieux font aussi des collectifs, certains gagnent et certains perdent. En fin de compte, il y a une notion d'un Dieu suprême, le Dieu qui est la limite du collectif de tout ce que les dieux survivent, défini comme infiniment haut dans la hiérarchie des dieux, et exigeant des actions éthiques.

Cette conception limitative de Dieu était considérée comme si importante par les anciens penseurs, qu’ils ont laissé toutes leurs autres idées disparaître dans l’effondrement médiéval, choisissant de ne conserver que cela au moyen-âge.

Mais en Outre les notions pratiques de guider le comportement dans les collectifs, les anciens attribuaient également toutes sortes de prouesses surnaturelles à Dieu, y compris la création de l'univers et la conception de la vie à la main. Ces idées sur Dieu sont hors de propos avec la conception comme méta-propriété d'un système complexe, et sont complètement contredites par les découvertes scientifiques modernes. Ils sont superflus pour la religion et lui sont préjudiciables, car ils font que les gens s'attendent à des miracles et à une intervention divine d'une manière qui enfreint les lois de la nature, et de telles choses n'arrivent tout simplement jamais.

La notion de Dieu, dans la mesure où comme j'ai pu en comprendre le sens, est essentiellement une conception computationnelle limitative - c'est la limite à mesure que le temps passe à l'infini du comportement d'un système complexe où les entités de calcul se combinent et croissent en puissance en unités de plus en plus grandes. L'idée de la limite suggère qu'il y aura une cohérence entre les unités à tous les niveaux, de sorte que dans la limite de temps infinie, par exemple, toutes les sociétés s'accorderont sur la marche à suivre éthique dans une circonstance donnée, et s'accorderont sur la manière d'organiser leurs économies et de structurer leurs relations interpersonnelles. Ces prédictions sont surprenantes, compte tenu de la divergence du comportement humain, et pourtant, l’histoire suggère qu’une telle convergence se produit lentement.

Cette décidabilité de calcul dans la limite évolutive a une contrepartie directe dans l'idée que lorsque les systèmes mathématiques deviennent plus complexes, par réflexion, ils décident de tous les théorèmes arithmétiques. Ce n'est pas un théorème, mais une observation. Il est à noter qu'au fur et à mesure que nous montons dans la tour des principes de réflexion théorique, de plus en plus de théorèmes arithmétiques sont résolus, et il n'y a pas de limitation de principe qui suggère que les théorèmes ne seront pas tous décidés par une réflexion assez forte. Ceci est "l'article de foi" de Paul Cohen dans la pratique mathématique, et je l'accepterai sans réserve.

De plus, l'article de foi vous dit que nous avons déjà un nom pour l'idée mathématique de Dieu, il peut être identifié avec le concept de l'ordinal de Church Kleene, la limite de tous les ordinaux calculables dénombrables. Tout système formel calculable ne peut approcher cet ordinal que progressivement, et cet ordinal est infiniment riche. Si vous avez une description de cet ordinal, vous avez un principe de réflexion qui devrait être assez puissant pour décider de tous les théorèmes d'arithmétique, pour décider quelles seront les conséquences de tout système axiomatique.

Parce que cet ordinal a tous les attributs théologiques que les religieux attribuent à Dieu, par rapport aux mathématiques pures, je considère comme une sorte d'hérésie de supposer qu'il existe des ordinaux plus grands. En particulier, toute notion du premier ordinal indénombrable, ou ordinaux inaccessibles, n'a de sens qu'une fois qu'ils sont placés dans un système axiomatique donné, et ensuite ils devraient s'effondrer dans le modèle dénombrable approprié pour être inférieur à l'ordinal de Church Kleene. Ce n'est pas techniquement précis, mais cela fait passer l'idée principale (il est facile de réduire les ordinaux pour qu'ils soient dénombrables, mais il n'est pas si facile de réorganiser le schéma pour les rendre inférieurs à Church Kleene, mais c'est parce que dans toute déduction système qui est de nature théorique des ensembles, vous pouvez donner un nom à l'ordinal de Church Kleene, et définir cet ordinal plus 1, etc. Ces considérations techniques ne sont pas si importantes pour les idées philosophiques)

Donc l'interprétation que je prendrai pour la doctrine religieuse est que Dieu doit être identifié avec l'ordinal de l'Église Kleene, aucun ordinal supérieur ne doit être interprété comme réellement supérieur, et les dieux seront identifiés avec des collectifs humains agissant ensemble pour former une unité plus grande que les individus . La loi monothéiste des systèmes complexes déclarera que tous les dieux convergent vers l'idéal représenté par Dieu au fil du temps, alors qu'ils se battent dans une lutte darwinienne.

Automates et l'expérience de Darwin

Quand vous avez un automate cellulaire capable d'un calcul universel, il y a un phénomène étrange - ses sous-parties sont toujours en concurrence avec lui-même. Pour expliquer cela, il faut regarder l'expérience de Darwin, détaillée dans l'Origine des espèces.

La plupart de l'origine est théorique, mais Darwin a fait une expérience importante. Il prit une parcelle de terrain carrée et enleva soigneusement tous les êtres vivants visibles du sol. Il a déraciné toutes les plantes, tamisé pour éliminer les insectes et laissé la parcelle seule pour voir comment elle serait recolonisée.

Ce qu'il a observé, c'est que les espèces végétales qui ont recolonisé la parcelle étaient d'abord de la variété instable à croissance rapide, qu'un tas de mauvaises herbes et d'insectes s'est répandu dans la nouvelle zone. Puis, au fil du temps, d'autres espèces plus résistantes ont lentement pris le relais des mauvaises herbes, jusqu'à ce que, plusieurs mois plus tard, la parcelle soit impossible à distinguer des terres restantes dans le lot.

Le but de l'expérience était de voir si il y a une lutte réelle pour les ressources dans la nature. Darwin a émis l'hypothèse que si la nature est en lutte constante, différents éléments, qui réussissent mieux mais se répliquent lentement, ne l'emporteront qu'après un certain temps sur des éléments moins résistants, mais dont la stratégie est la colonisation rapide de nouveaux territoires. Ses observations étaient cohérentes avec l'idée que les êtres vivants dans n'importe quel domaine luttent continuellement pour la primauté, et que la limitation réside dans les ressources finies dans n'importe quelle parcelle de terrain donnée.

Cette idée peut être testée en informatique cellulaire automates. En mettant à zéro un patch carré dans un automate cellulaire 2D qui semble stable, on peut voir si les données restantes colonisent l'espace de manière uniforme ou de manière progressivement transformée. J'ai fait cette expérience en utilisant des automates cellulaires 8 bits (256 valeurs) avec des règles aléatoires, et j'ai trouvé que dans de nombreux cas, les cas qui sont complexes, la colonisation se fait par étapes, un peu comme dans le terrain de Darwin. Les étapes sont de courte durée, reflétant peut-être le calcul limité possible dans une petite région avec des valeurs de 8 bits. Il serait intéressant de répéter l'expérience en utilisant des entiers arbitrairement grands sur chaque cellule, ce qui peut être considéré comme représentant un polymère complexe, qui catalyse les transformations sur ses voisins

Mais la colonisation inhomogène suggère qu'une fois que vous avez un en calculant des automates cellulaires, il y a une concurrence constante entre les parties des automates, qui font des calculs collectifs, pour les ressources. En d'autres termes, que la lutte de Darwin est commencée.

Pour rendre cette idée plus précise, envisagez de diviser une CA en deux, en plaçant un mur entre la moitié gauche et la moitié droite, et en ne permettant pas aux moitiés d'interagir. Si l'AC est vraiment computationnelle et complexe, les deux moitiés ne parviendront pas à un équilibre statistique, mais auront des structures complexes de chaque côté qui acquièrent de nouvelles caractéristiques au hasard au fil du temps, à mesure que ses sous-parties évoluent.

Si vous retirez maintenant le mur, il est peu probable que la moitié gauche ait des caractéristiques compatibles avec la moitié droite. Ils ne pourront pas se mélanger. Donc dans ce cas, les deux moitiés doivent se battre pour la domination, et la moitié gagnante imposera ses caractéristiques à l'autre moitié remplissant tout l'espace de cellules compatibles avec ses caractéristiques. Ces caractéristiques comprennent des «animaux» CA typiques ou des structures qui sont qualitativement similaires dans leurs relations, des configurations particulières qui ne sont stables que dans l'environnement des autres structures qui les entourent. Il est difficile d'extraire ces caractéristiques d'une simulation en cours, car on ne sait pas a priori quoi chercher, mais je suis convaincu que cela peut être fait.

Ce type de chose implique qu'il y a est une compétition continue dans une CA qui apparaît au moment où elle est ensemencée pour la première fois, et se poursuit tant qu'elle fonctionne. Dans cet environnement, la sélection et l'évolution darwiniennes sont possibles même sans aucune structure auto-réplicative explicite. Toute auto-réplication a des traits qualitatifs de très haut niveau, pas de structures de bits de bas niveau.

Réplication et évolution

Ce point de vue est différent du point de vue le plus courant concernant l'évolution (qui n'est pas celle initialement proposée par Darwin). Le point de vue habituel est l'évolution de la synthèse moderne, qui suggère que l'évolution se déroule en copiant des chaînes de bits dans des molécules, avec des erreurs, et que le résultat est que des chaînes de bits optimisées sont finalement sélectionnées.

Ce point de vue est extrêmement pauvre pour modéliser l'évolution biologique réelle. Premièrement, rien de ce que vous connaissez ne s'est réellement répliqué. Les gens ont des relations sexuelles, les bactéries partagent des gènes et le croisement est compliqué sur des séquences non génétiques, il ne s'agit que d'un simple brassage de gènes.

De plus, les mutations semblent être produites par des mécanismes internes obscurs dirigés par un ARN complexe réseaux dans les ovules et dans les testicules. Ce ne sont pas des erreurs de copie aléatoires. Supposer que le monde biologique est produit par un processus de copie avec erreur, couplé à la sélection est aussi ridicule que le suggère la parabole suivante:

Il y a plusieurs années, il n'y avait qu'un seul livre. C'était un livre de cuisine, avec des instructions détaillées sur la façon de faire des macaronis et du fromage. Le livre a été copié par des scribes, qui ont commis une erreur ici, un passage omis là, et ces livres ont alors rivalisé pour attirer l'attention. Certaines recettes ont été améliorées par les erreurs, d'autres sont devenues illisibles. Finalement, les livres se sont allongés, avec de nouveaux passages produits par duplication accidentelle, jusqu'à aujourd'hui, voici! La bibliothèque du Congrès!

Cette histoire est ridicule. Mais c'est cette histoire ridicule qui est actuellement vendue comme dogme dans les sciences biologiques.

À mon avis, toute théorie réaliste de l'évolution doit être plus proche de Darwin que de la synthèse moderne. Il doit tenir compte du fait que le processus de mutation est auteur , il procède par édition complexe d'ARN de séquences d'ADN. Il doit prendre en compte l'idée que la sélection sexuelle est primordiale, de sorte que la sélection du partenaire est le moteur dominant de l'évolution des espèces sexuelles. Il doit également prendre en compte l'idée que la compétition commence bien avant la réplication, et ne nécessite rien de plus qu'une CA informatique.

Cette position est soutenue par des expériences informatiques sur l'évolution auto-répliquée. Afin de tester la sélection naturelle, de petits morceaux de code ont été autorisés à se répliquer et à s'auto-modifier dans les années 1970-1980, pour voir quel serait le résultat final. Le résultat final a été que les programmes se sont modifiés jusqu'à ce qu'ils trouvent l'auto-réplicateur le plus court et le plus rapide, qui a ensuite rempli la mémoire de l'ordinateur.

À l'époque, cela était considéré comme un signe positif, les programmes avaient évolué. Mais la stase évidente dans l'état final m'amène à voir cela comme la mort d'un système complexe. Il n'y a plus de progrès possible à partir de l'état final, sans un agent externe pour lancer les choses. Le résultat n'est pas un système complexe, mais un système piégé dans un équilibre stable de réplication rapide parasite. Loin d'être un modèle de vie, il s'agit d'un modèle de cancer auto-répliquant tuant toute évolution.

Propriétés de CA: l'erreur ennuyeuse de Wolfram

Wolfram a classé les automates cellulaires en quatre types:

  1. état final homogène
  2. Structures périodiques simples, peut-être séparées, avec des périodes différentes
  3. Structures auto-similaires ("chaotiques")
  4. Structures complexes

Le type 1 sont des automates qui meurent. Celles-ci n'ont qu'un seul point de terminaison stable que vous atteignez toujours. Le type 2 a une infinité de points d'extrémité, mais ils sont aussi simples à décrire qu'un mouvement intégrable classique --- vous avez juste des cycles de certains types, et pour spécifier le point final, vous donnez une liste de tous les cycles, et où vous en êtes le cycle, et cela spécifie le résultat de l'exécution de l'autorité de certification à partir d'une condition initiale donnée. Ces deux premiers types d'automates ne reproduiront évidemment pas un ordinateur à usage général.

Le type 3 sont ces automates qui conduisent à des structures fractales auto-similaires, comme le joint de Sierpinski. Celles-ci sont plus complexes, de sorte que l'état final nécessite un calcul réel pour être spécifié, et wolfram les identifie avec des mouvements chaotiques classiques. Je pense que cette identification est erronée, mais c'est ce que c'est.

Les types 4 sont les automates complexes, où vous devez les exécuter complètement pour comprendre ce qu'ils font. Je n'aime pas la catégorie finale, donc je vais maintenant donner ma classification personnelle.

  1. état final homogène
  2. états finaux périodiques simples, peut-être séparés par des périodes différentes
  3. Structures fractales auto-similaires ou statistiquement auto-similaires
  4. automates aléatoires, point final chaotique stable, stat. mech.
  5. Automates complexes, biologie.

La classe 3 est légèrement développée et la classe 4 est divisée en deux. Il existe des automates aléatoires, qui agissent pour produire une collection aléatoire de valeurs qui errent de manière ergodique dans l'espace de valeurs autorisé, et la classe 5, ces automates qui produisent un véritable comportement complexe, avec un moyen de mapper un ordinateur avec une carte de complexité raisonnable. , qui peut en fait être décrite par une procédure finie.

Parce que Wolfram ne fait pas la distinction entre 4 et 5, il regroupe des automates purement aléatoires, se thermalisant dans un équilibre chaotique de type Boltzmann, comme les automates 25, avec des automates vraiment complexes comme 110. La distinction entre les deux sont tous importants, mais peut-être en raison d'une incapacité à admettre que sa première classification était incomplète, Wolfram refuse de se présenter.

Je ferai cette distinction. Les automates de type 4 sont les analogues des systèmes classiques chaotiques, randomisant leurs informations dans un attracteur étrange, défini par les valeurs autorisées des amas de sites et une distribution de probabilité sur ceux-ci. Une fois que vous savez quels agrégats autorisés se produisent avec quelle probabilité, vous pouvez générer une sortie typique sans aucun travail, en utilisant un générateur de nombres aléatoires. Ce ne sera pas la sortie réelle, car elle est déterministe, mais elle sera indiscernable de la sortie réelle à toutes fins utiles.

Les automates de type 4 sont tout aussi a-biologiques, tout aussi morts, que types 1-3. CA 25 n'est pas vivant. Je suis sûr à 100% que je n'interprète pas mal Wolfram, car je lui ai spécifiquement demandé, en personne, lors d'un séminaire, s'il croyait qu'il y avait une carte entre le CA 25 et un ordinateur. Il a répondu qu'il pensait que c'était le cas, mais que c'était extraordinairement compliqué et que cela avait l'air aléatoire. Je suis sûr que cela n'existe pas.

Les automates de type 5 sont illustrés par 110. Ce sont ceux qui ont des structures prévisibles avec un comportement non aléatoire. Ceux-ci peuvent être utilisés pour coder le calcul de Turing complet. Le fait que ce ne soit pas la mesure 0 est une découverte importante - cela donne une explication sur l'origine de la vie.

L'existence de CA informatiques typiquement signifie que la vie peut émerger naturellement dès qu'un système peut stocker de grandes quantités d'informations ont spontanément des interactions susceptibles de former un ordinateur. Cela se produit avec 110, mais cela devrait aussi arriver avec des protéines aléatoires dans une soupe pré-biotique, car nous y sommes!

L'évolution de la vie, telle que je crois qu'elle se produit, est purement moléculaire pour la plupart des premiers stades. Les protéines entrent en compétition et évoluent, produisant une classe plus précise qui peut survivre, qui finalement catalysent la formation d'acides nucléiques (entre autres), et apprennent à stocker des données pour une récupération ultérieure dans les acides nucléiques. Les complexes de protéines d'acide nucléique calculent alors davantage et apprennent à stocker des données dans l'ADN, pour un stockage permanent (puisque l'ADN est beaucoup plus stable). Enfin, ils emballent tout cela dans des cellules, et vous avez la vie moderne.

C'est une histoire juste comme ça, mais elle est importante car à aucun moment elle ne postule une entité moléculaire auto-répliquée. De telles entités sont toxiques pour l'émergence de la vie (comme le montrent les expériences informatiques), et il est bon qu'elles n'existent pas, sinon la vie ne pourrait pas émerger.

Agenda sociologique de Wolfram

Il y a une raison distincte pour le manque de succès de Wolfram dans la pénétration du monde scientifique qui n'a rien à voir avec la qualité de ses idées (qui ne sont vraiment pas si mauvaises). Wolfram a pris la décision consciente de poursuivre sa science en utilisant des fonds privés qu'il a collectés en produisant un logiciel à source fermée, Mathematica, pour la vente aux universités. De cette manière, il produisait un modèle de recherche scientifique financé par des capitaux privés plutôt que par des fonds publics. Parce que Mathematica connaît un tel succès, beaucoup ont vu son travail comme un modèle pour un nouveau type de science capitaliste.

Cette idée était très courante dans le climat pro-capitalisme des années 1980, où les choses financées et financées par l'État étaient méprisées, à cause des contraintes à la liberté individuelle imposées par l'État moderne. L'Union soviétique était l'exemple extrême, là toute la science était guidée par des décisions étatiques, qui étouffaient certains domaines comme la génétique, sur la base de la position idéologique du gouvernement. Aux États-Unis, la science a été reprise par le gouvernement et transformée en grande science dans les années 1950, explicitement afin de rivaliser avec les Soviétiques, et de nombreuses personnes se sont senties gênées par le système de la grande science, à gros sous, qui excluait les recherches prometteuses. pistes de réflexion.

Le manque de liberté dans le système géré par l'État a conduit de nombreuses personnes à s'y opposer, et l'un des ingrédients de cette lutte était le financement privé. Ceci n'était évidemment disponible qu'en dehors des régions contrôlées par les communistes. Wolfram a politiquement pris la décision de rechercher un financement privé pour ses recherches.

Le résultat reflète tout ce qui est bon et tout ce qui est mauvais dans la science à financement privé. C'est bien, car cela permet à l'individu avec une idée de le poursuivre indéfiniment, et aucune critique extérieure ne peut arrêter ou tuer le travail. Ils peuvent s'auto-publier, sans se soucier du fait que l'évaluation par les pairs rejette leurs idées avant d'avoir le temps de germer.

C'est mauvais à plusieurs égards, qui ont fait l'objet de critiques universitaires

  • L'autofinancement oblige l'individu à accumuler de grandes quantités de richesses, ce qui conduit au sycophantisme chez ceux qui l'entourent, ce qui les empêche d'entendre des critiques convaincantes, de sorte que les erreurs ne sont pas corrigées.
  • En entreprise privée, on ne cite pas de sources. On donne l'impression que l'on a tout fait tout seul. Ceci n'est pas compatible avec les conventions académiques pour les citations et le respect de l'histoire d'un domaine. Alors que Steve Jobs peut sans doute s'attribuer le mérite du travail de ses employés, il est difficile pour Wolfram de justifier de s'attribuer le mérite du travail de Cook, même s'il a payé son salaire.
  • L'effet Citizen Kane: l'isolement et la corrosivité le pouvoir de l'argent conduit facilement à la mégalomanie et à l'isolement, ce qui conduit à rejeter les idées des autres. Cela se voit malheureusement dans le rejet blême d'une phrase par Wolfram du travail extrêmement important de Post, Friedberg et Munchnik sur les diplômes de Turing en dessous du problème de l'arrêt. Il affirme que tous les CA naturels sont soit équivalents au problème d'arrêt, soit aléatoires, soit triviaux. C'est le principe de «l'équivalence de calcul». Mais c'est une déclaration non triviale, et nécessite plus de preuves que ce qui est présenté dans NKS.

Les problèmes de la recherche privée sont tout à fait complémentaires aux problèmes de la recherche publique, et il n'y a aucune raison de rejeter l'un entièrement en faveur de l'autre. Mais NKS montre ces défauts à la pelle, et cela est particulièrement irritant pour les chercheurs publics relativement mal payés, qui ont travaillé tout aussi dur sur leurs idées, sinon plus, sans le mégaphone d'argent pour les crier au monde.

Je pense que la nouveauté de NKS est le modèle de financement - l'idée que l'on peut faire des recherches de manière privée et indépendante. C'est peut-être le modèle de l'avenir, mais compte tenu du succès relatif de la science financée par des fonds publics par rapport à la science privée, même dans le cas répressif le plus extrême de l'Union soviétique, je ne suis pas optimiste sur le fait que ce soit la meilleure façon. Il est probable que l'on devra faire face aux désagréments et aux caractéristiques sous-optimales du financement public pour un avenir indéfini.

Peut-être qu'avec une structure Internet appropriée, comme stackexchange, une partie de la censure et de la pensée de groupe de la science publique peut être atténuée.

Ne vous en faites pas, ce n'est que le secret et le sens de la vie. Cela peut aller un peu au-delà de la portée de la question, mais je voyage demain, alors j'ai pensé qu'il serait bon de partager, vous savez, au cas où l'avion s'écraserait.
En fait, j'ai lu un bon morceau et je lirai probablement le reste à un moment donné - des choses intéressantes comme d'habitude mais il semble que beaucoup ne soient que très tangentiellement liés à la question :)
@zephyr: Je m'attendais à beaucoup de votes négatifs pour cela, mais je voulais expliquer ce truc, et c'était la chose la plus proche d'une question sur NKS.
@ronmaimon très intéressant, lu une fois et devra lire encore et encore un autre jour! Merci +1!
fait amusant: c'est la deuxième réponse la plus longue de phy.SE
@pcr: Quelle est la plus longue?
AilivpbdhpCMT http://meta.physics.stackexchange.com/questions/1124/longest-answer-ever.
"Cette histoire est ridicule. Mais c'est cette histoire ridicule qui est actuellement vendue comme dogme dans les sciences biologiques": Qu'y a-t-il de ridicule dans cette histoire?C'est une méthode de travail
@agemO: La partie ridicule est que le mécanisme de mutation est sans cervelle et non informatique.Il n'y a aucune preuve à ce sujet.Il est vrai que les mutations de type SNP dans les protéines sont aléatoires, mais elles sont aussi généralement inutiles, elles font une évolution neutre de type horloge.Les aspects intéressants de l'évolution sont l'effet sur l'ADN non codant, et ces changements sont extrêmement compliqués, et certainement régulés par des réseaux d'ARN faisant un calcul sophistiqué.Ces mutations n'ont aucun rapport avec les modèles de génétique des populations, elles ressemblent plus à un design intelligent, l'ARN étant le concepteur, pas Dieu.
Je ne dis pas que je suis sûr que le mécanisme de mutation n'est pas meilleur que juste aléatoire, mais s'il est juste aléatoire, cela fonctionne et ce n'est pas ridicule, vous pouvez créer un algorithme évolutif avec une mutation aléatoire et cela fonctionne tant que l'étape de sélectionn'est pas aléatoire (ce qui est le cas en biologie: la sélection vient de la survie ou de la mort)
@agemO: Cela ne semble fonctionner que superficiellement à l'intuition naïve, cela ne fonctionne pas vraiment, et c'est ce que de nombreux critiques de l'évolution de la synthèse moderne soulignent depuis des décennies.Il devient impossible de muter-évoluer au-delà d'une certaine complexité sans co-faire évoluer le mécanisme de mutation avec le système.La raison en est que la distance entre des maxima de fitness à peu près égaux augmente de manière générique avec la complexité, de sorte que les pas que vous faites doivent être plus grands.Le modèle actuel n'est tout simplement pas correct.Mais le mécanisme correct pour résoudre ce problème est également évident aujourd'hui: l'édition d'ARN de l'ADN.
Quand je dis que ça marche, je veux dire que ça donne des résultats, bien sûr, je suppose que l'évolution elle-même a subi une méta-évolution, de sorte qu'elle est aujourd'hui plus efficace / compliquée que le pur hasard.Je ne connais pas vraiment grand chose à la biologie mais j'avais l'impression que c'était le point de vue principal aujourd'hui, avec des preuves d'un taux de mutation réglé par exemple.
@agemO: Il ne donne aucun résultat non plus.Les mutations protéiques locales qui modifient la forme physique peuvent être comptées d'une part: la couleur des papillons de nuit et la drépanocytose, c'est à peu près tout.Ce sont des exceptions, pas la règle, mais elles sont inscrites comme la règle dans les livres.L'image est tout simplement fausse, car c'est une image non informatique, et elle est également délibérément fausse, car elle correspond à une idée athée selon laquelle les calculs naturels n'existent pas.Ce type d'athéisme sans calcul dans la nature est falsifiable et falsifié.Vous avez eu l'impression parce que c'est un dogme, c'est ce que tout le monde dit, à tort.
Cela donne un résultat pour un problème d'optimisation, un robot de construction ou une forme aérodynamique.Peut-être que la mutation aléatoire n'est pas le seul / principal mécanisme aujourd'hui, mais cela fonctionne. Et quand j'ai dit «j'ai eu l'impression», j'ai eu l'impression que «plus qu'aléatoire» était tout à fait accepté, mais je n'en suis pas sûr. Btw avez-vous des références pour ceci: "l'athéisme sans calcul dans la nature est falsifiable et falsifié."
@agemO: Cela fonctionne (mal) comme une méthode de _optimisation des paramètres_ et non comme une méthode de _évolution_.Une meilleure optimisation des paramètres est obtenue grâce au recuit simulé, ou à la descente la plus raide, ou les deux, selon les détails de la fonction de coût.L'évolution n'est pas un simple processus d'optimisation, mais l'évolution dans un système informatique implique l'écriture d'un nouveau code, rendant le code existant plus complexe.Il a malheureusement été pensé comme une version d'optimisation des paramètres.La mutation aléatoire n'est tout simplement pas le processus naturel dans un système informatique, mais plutôt une réécriture cohérente à grande échelle.
... Je ne donne aucune référence pour autre chose que pour la priorité, car je ne sais pas et ne me soucie pas de l'autorité.Je l'ai remarqué moi-même.J'aurais pu être le premier, j'en doute.Il y a une Leslie Valient qui dit des choses similaires, mais qui ne sait pas comment fonctionne l'ARN.La plupart des gens qui remarquent que les modèles de mutations aléatoires échouent sont religieux et l'utilisent pour dire "Dieu l'a fait de manière surnaturelle", donc je ne peux pas les citer avec un visage impassible, car ils rejetteraient généralement les réécritures d'ARN aussi véhément que l'ARNn'est pas biblique non plus.Mais la réécriture de l'ARN est nécessaire.Je ne suis vraiment pas sûr de l'acceptation, et je m'en fiche.
Par référence, j'entends des preuves ou des explications plus claires sur ce que vous dites sur l'ARN
@agemO: Je vois.J'écrirai quelque chose de cohérent.Je ne l'ai jamais écrit, car John Mattick a bien compilé les preuves en 2001 (vous pouvez google Mattick RNA), et pense des choses similaires, mais pas avec le point de vue informatique.Les preuves sont en fait accablantes maintenant, c'est à peu près le seul point de l'énorme projet ENCODE, de donner à cette thèse un poids savant.
#2
+21
Johannes
2011-01-30 11:35:00 UTC
view on stackexchange narkive permalink

Les premiers travaux de Wolfram sur les automates cellulaires (CA) ont été utiles à certains égards didactiques. Les CA 1D définis par Wolfram peuvent être considérés comme des modèles minimalistes pour des systèmes avec de nombreux degrés de liberté et une limite thermodynamique. Dans la mesure où ces CA reposent sur un mélange de dynamiques locales discrètes, des résultats de chaos déterministes.

Hormis ces réalisations didactiques, le travail de Wolfram sur les CA n'a abouti à rien de tangible. Cette déclaration peut être étendue à un groupe beaucoup plus large d'AC, et vaut même pour les automates à gaz à réseau (LGA), des CA dédiées aux simulations hydrodynamiques. Les LGA n'ont jamais tenu leur promesse initiale de fournir une méthode pour simuler la turbulence. Un système dérivé (Lattice Boltzmann - pas un CA) a quelques applications dans la simulation de flux.

C'est dans ce contexte que NKS est sorti en grande pompe. Sans surprise, l'accueil de la communauté scientifique a été négatif. Le livre ne contient aucun nouveau résultat (le résultat selon lequel la «règle 110 CA» est Turing complète a été prouvé des années plus tôt par l'assistant de recherche de Wolfram, Matthew Cook), et n'a eu aucun impact sur les autres domaines de la physique. J'ai récemment vu une pile d'exemplaires NKS en vente pour moins de 10 $ dans mon magasin de livres à moitié prix local.

D'une manière ou d'une autre, j'ai fini avec deux d'entre eux qui m'ont été envoyés par Amazon. Ils font un bon ballast pour mon bateau.
Les CA -1: 1D n'entraînent pas de chaos déterministe lorsqu'ils calculent, comme 110, ils aboutissent à des structures complexes qui évoluent. Le modèle de Boltzmann en treillis que vous donnez est essentiellement une CA avec des règles de mise à jour aléatoires, et il est utilisé dans les simulations hydrodynamiques. Le livre a quelques «nouveaux» résultats (mais ceux-ci sont pour la plupart incorrects). C'est le plus important en tant que résumé de la pensée de Wolfram.
Ron, si vous faites une déclaration générale selon laquelle les automates 1D ne peuvent pas conduire au chaos déterministe, je me demande comment vous définissez ce dernier?
@Johannes: (désolé pour le vote défavorable, je suppose que ce n'est pas suffisamment explicite). La définition que j'utilise pour le chaos n'est pas celle de Wolfram, c'est que l'automate radomise. Cela signifie que si vous prenez un instantané de taille finie dans une fenêtre d'étendue finie, vous pouvez calculer la distribution statistique dans cette fenêtre avec une précision arbitraire sans exécuter du tout l'automate, juste avec un calcul de longueur fixe qui ne dépend que de la précision, pas sur combien de temps l'automate est exécuté.
Ok, cela confirme mes soupçons. Vous voudrez peut-être en lire sur le chaos, les coefficients de Luyapunov, etc.
@Johannes: Je n'ai pas besoin de lire quoi que ce soit --- je sais ce que sont les exposants de Lyapunov. Il y a des automates _chaotiques_, comme 25, où le truc est aléatoire, et des automates _computing_, comme 110, où le truc est vivant. Les deux sont différents. Les 25 automates ont un flux d'information non local analogue aux exposants de Lyapunov, tandis que 110 n'est pas analogue à un système dynamique simple. C'est un ordinateur complet, il n'a pas d'analogues autres que d'autres ordinateurs complets.
@Gordon: Je ne peux pas vous voter pour, mais si je pouvais, vous obtiendrez +10 pour votre sens de l'humour qui va à l'encontre du point de vue traditionnel des ayatollahs / curieux / communistes / fascistes / pro / contre. (espère, je n'ai blessé aucun côté ni sentiments).
re "Les LGA n'ont jamais livré ... une méthode pour simuler la turbulence" - "la plupart des CA non triviaux sont Turing Complete" peuvent donc (théoriquement) simuler tout ce qui est calculable.donc une partie de ce débat se résume à une question presque philosophique, les lois de la physique sont-elles calculables?la plupart des physiciens supposent implicitement que c'est le cas de l'adhésion à la modélisation mathématique en tant que langage universel supposé de la physique.(concernant "l'efficacité déraisonnable des mathématiques dans les sciences naturelles") https://en.wikipedia.org/wiki/The_Unreasonable_Effectiveness_of_Mathematics_in_the_Natural_Sciences
@vzn - «la plupart des CA non triviaux sont Turing Complete» peuvent donc (théoriquement) simuler tout ce qui est calculable ». Correct, mais d'un point de vue informatique qui ne les rend d'aucune manière utiles. Les LGA ont été introduits comme un outil de calcul prometteur pour la simulationturbulence, mais jamais tenu cette promesse.
#3
+17
Scott Aaronson
2012-08-21 13:54:24 UTC
view on stackexchange narkive permalink

Peu de temps après la sortie de NKS, j'ai rédigé une critique dans laquelle j'ai essayé d'expliquer pourquoi la réponse à votre excellente question est oui. Un modèle déterministe comme celui de Wolfram ne peut pas reproduire les violations d'inégalité de Bell, pour des raisons fondamentales, sans violer la propre règle de Wolfram de «l'invariance causale» (ce qui signifie fondamentalement que l'évolution d'un CA ne devrait pas dépendre de l'ordre dans lequel les mises à jour sont appliquée à des régions spatialement éloignées). Même avec quelques "threads à longue portée" dans l'automate cellulaire (ce que Wolfram autorise explicitement, après avoir remarqué le problème de Bell), vous ne pouvez toujours pas obtenir l'invariance causale, à moins que les états réels de l'automate soient probabilistes ou quantiques. Une observation étroitement liée a été plus tard surnommée le «théorème du libre arbitre» par John Conway et Simon Kochen.

#4
+7
Janne808
2011-01-30 11:24:01 UTC
view on stackexchange narkive permalink

La plupart de ces modèles d'automates sont déterministes au même sens que les générateurs de nombres pseudo-aléatoires. Par exemple, dans les modèles de gaz de réseau, les règles déterministes finissent par générer du bruit et des fluctuations à grande échelle en accord avec les équations de Navier-Stokes (y compris la turbulence, bien que cela ne soit pas pratique en termes de calcul en raison des grandes dimensions de réseau nécessaires pour réduire la viscosité du réseau). Le jeu du gaz sur réseau est passé à la fin des années quatre-vingt d'automates de particules discrètes bruyantes à des automates à valeur continue à échelle mésoscopique de Boltzmann basés sur la distribution lisse (voir Guy R. McNamara et Gianluigi Zanetti, Utilisation de l'équation de Boltzmann pour simuler les automates de gaz de réseau, Phys. Rev. Lett. 61, 2332–2335 (1988)), c'est donc là que vous trouvez les avancées les plus pertinentes de nos jours.

#5
+2
user41670
2014-03-07 01:54:43 UTC
view on stackexchange narkive permalink

Murray Gell-Mann a une interprétation intéressante du théorème de Bell qui se rapporte directement à la thèse de Stephen Wolfram sur la modélisation des lois physiques avec des automates cellulaires dans son tome: 'A New Kind of Science', une analyse qui lui a pris plus de 20 ans. .

Selon Murray, les modèles élégants de physique impliquent des lois fondamentales en plus des résultats des résultats aléatoires d'un certain nombre de choses qui ne sont pas déterministes au sens de la mécanique quantique (il fait référence aux constantes physiques ). En effet, il est difficile d'imaginer les automates cellulaires de Wolfram à quelque échelle que ce soit déterminant les principes fondamentaux d'une théorie comme la chromodynamique quantique, qui a été peaufinée et / ou renormalisée à chaque étape pour garantir que la théorie fonctionne aussi étroitement que possible à la nature. . Il est pour le moins douteux que les automates cellulaires soient capables de reproduire ne serait-ce qu'une partie de ce processus itératif d'une manière qui produirait autre chose que des simulations totalement inutiles sans rapport avec ce qui se passe dans le monde naturel.

Une chose que Stephen a prédit dans NKS et qui semble se produire en grande partie est l'idée que la science dépend de plus en plus du grand calcul pour obtenir des résultats qui font progresser notre connaissance de l'univers. Le LHC à Genève en est un bon exemple.

Le LHC n'est pas exactement un gros calcul (bien que le traitement des données le soit), mais le point de votre dernier paragraphe est bon.


Ce Q&R a été automatiquement traduit de la langue anglaise.Le contenu original est disponible sur stackexchange, que nous remercions pour la licence cc by-sa 2.0 sous laquelle il est distribué.
Loading...