Bien que tard dans la fête, je poste une réponse à un niveau élémentaire. Peut-être que cela prouve la puissance du calcul tensoriel utilisé dans toutes les bonnes réponses précédentes.
Abstract
Dans cette réponse, nous essaierons de dériver des équations de Maxwell dans un espace vide
\ begin {align}
\ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {E} & = - \ frac {\ partial \ mathbf {B}} {\ partial t}
\ tag {001a} \\
\ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {B} & = \ mu_ {0} \ mathbf {j} + \ frac {1} {c ^ {2}} \ frac {\ partial \ mathbf { E}} {\ t partiel}
\ tag {001b} \\
\ nabla \ boldsymbol {\ cdot} \ mathbf {E} & = \ frac {\ rho} {\ epsilon_ {0}}
\ tag {001c} \\
\ nabla \ boldsymbol {\ cdot} \ mathbf {B} & = 0
\ tag {001d}
\ end {align}
à partir des équations d'Euler-Lagrange
\ begin {équation}
\ boxed {\:
\ dfrac {\ partial} {\ partial t} \ left (\ dfrac {\ partial \ mathcal {L}} {\ partial \ dot {\ eta} _ {\ jmath}} \ right) + \ nabla \ boldsymbol {\ cdot} \ left [\ dfrac {\ partial \ mathcal {L}} {\ partial \ left (\ boldsymbol {\ nabla} \ eta _ {\ jmath} \ right)} \ right] - \ frac {\ partial \ mathcal { L}} {\ partial \ eta _ {\ jmath}} = 0, \ quad \ left (\ jmath = 1,2,3,4 \ right)
\:}
\ tag {002}
\ end {équation}
où
\ begin {équation}
\ mathcal {L} = \ mathcal {L} \ left (\ eta _ {\ jmath}, \ dot {\ eta} _ {\ jmath}, \ boldsymbol {\ nabla} \ eta _ {\ jmath} \ right) \ qquad \ gauche (\ jmath = 1,2,3,4 \ droite)
\ tag {003}
\ end {équation}
est la densité lagrangienne de la question (sauf un facteur constant)
\ begin {équation}
\ boxed {\:
\ mathcal {L} = \ dfrac {\ Vert \ mathbf {E} \ Vert ^ {2} -c ^ {2} \ Vert \ mathbf {B} \ Vert ^ {2}} {2} + \ dfrac {1 } {\ epsilon_ {0}} \ left (- \ rho \ phi + \ mathbf {j} \ boldsymbol {\ cdot} \ mathbf {A} \ right)
\:}
\ tag {004}
\ end {équation}
et $ \: \ eta _ {\ jmath} \ left (x_ {1}, x_ {2}, x_ {3}, t \ right), \: \: \ jmath = 1,2,3,4 \: $ les composantes $ \: A_ {1}, \: A_ {2}, \: A_ {3}, \ phi \: $ du 4-vecteur potentiel EM respectivement.
Dans un sens, cette dérivation est construite sur l'inverse (: celle de trouver une densité lagrangienne correcte à partir des équations de Maxwell) en reculant, voir ma réponse ici: Deriving Lagrangian densité for electromagnetic field
1. Section principale
D'abord, nous exprimons $ \: \ mathbf {E}, \ mathbf {B} \: $ de (004) en termes de composantes potentielles à 4 vecteurs $ \: A_ {1}, \: A_ {2} , \: A_ {3}, \ phi \: $
\ begin {align}
\ mathbf {B} & = \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A}
\ tag {005a} \\
\ mathbf {E} & = - \ boldsymbol {\ nabla} \ phi - \ dfrac {\ partial \ mathbf {A}} {\ partial t} = - \ boldsymbol {\ nabla} \ phi - \ mathbf {\ dot { UNE}}
\ tag {005b}
\ end {align}
A partir de (005) les équations de Maxwell (001a) et (001d) sont valides automatiquement. Les quatre (4) équations scalaires de Maxwell (001b) et (001c) doivent donc être dérivées des quatre (4) équations scalaires d'Euler-Lagrange (002). De plus, il est raisonnable de supposer que l'équation vectorielle (001b) doit être dérivée de (002) par rapport aux composantes du potentiel vectoriel $ \: \ mathbf {A} = \ left (A_ {1}, \: A_ { 2}, \: A_ {3} \ right) \: $, tandis que l'équation scalaire (001c) doit être dérivée de (002) par rapport au potentiel scalaire $ \: \ phi \: $.
À partir des équations (005), nous exprimons la densité lagrangienne (004) en termes de composantes potentielles à 4 vecteurs $ \: A_ {1}, \: A_ {2}, \: A_ {3}, \ phi \ : $:
\ begin {align}
\ left \ Vert \ mathbf {E} \ right \ Vert ^ {2} & = \ left \ Vert - \ boldsymbol {\ nabla} \ phi - \ dfrac {\ partial \ mathbf {A}} {\ partial t} \ droite \ Vert ^ {2} = \ gauche \ Vert \ mathbf {\ dot {A}} \ droite \ Vert ^ {2} + \ Vert \ boldsymbol {\ nabla} \ phi \ Vert ^ {2} +2 \ gauche (\ boldsymbol {\ nabla} \ phi \ boldsymbol {\ cdot} \ mathbf {\ dot {A}} \ right)
\ tag {006a} \\
&
\pas de numéro\\
\ left \ Vert \ mathbf {B} \ right \ Vert ^ {2} & = \ left \ Vert \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right \ Vert ^ {2} \ equiv \ sum ^ {k = 3} _ {k = 1} \ left [\ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} - \ dfrac {\ partial \ mathbf {A }} {\ partial x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ right]
\ tag {006b}
\ end {align}
La deuxième équation de (006b), c'est-à-dire l'identité
\ begin {équation}
\ left \ Vert \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right \ Vert ^ {2} \ equiv \ sum ^ {k = 3} _ {k = 1} \ left [\ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} - \ dfrac {\ partial \ mathbf {A}} {\ partial x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol { \ nabla} \ mathrm {A} _ {k} \ right]
\ tag {Id-01}
\ end {équation}
est prouvé dans 2. Section des identités.
En insérant des expressions (006) dans (004), la densité lagrangienne est
\ begin {équation}
\ mathcal {L} = \ underbrace {\ tfrac {1} {2} \ left \ Vert \ mathbf {\ dot {A}} \ right \ Vert ^ {2} + \ tfrac {1} {2} \ Vert \ boldsymbol {\ nabla} \ phi \ Vert ^ {2} + \ boldsymbol {\ nabla} \ phi \ boldsymbol {\ cdot} \ mathbf {\ dot {A}}} _ {\ tfrac {1} {2} \ left \ Vert - \ boldsymbol {\ nabla} \ phi - \ frac {\ partial \ mathbf {A}} {\ partial t} \ right \ Vert ^ {2}} - \ tfrac {1} {2} c ^ {2 } \ underbrace {\ sum ^ {k = 3} _ {k = 1} \ left [\ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} - \ frac {\ partial \ mathbf {A}} {\ partial x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ right]} _ {\ gauche \ Vert \ boldsymbol {\ nabla } \ boldsymbol {\ times} \ mathbf {A} \ right \ Vert ^ {2}} + \ frac {1} {\ epsilon_ {0}} \ left (- \ rho \ phi + \ mathbf {j} \ boldsymbol {\ cdot} \ mathbf {A} \ droite)
\ tag {007}
\ end {équation}
Nous réorganisons les éléments de (007) comme suit:
\ begin {align}
\ mathcal {L} & = \ overbrace {\ tfrac {1} {2} \ Vert \ boldsymbol {\ nabla} \ phi \ Vert ^ {2} - \ frac {\ rho \ phi} {\ epsilon_ {0}} + \ boldsymbol {\ nabla} \ phi \ boldsymbol {\ cdot} \ mathbf {\ dot {A}}} ^ {\ mathcal {L} _ {\ phi} = \ text {par rapport à} \ phi} + \ tfrac {1} {2} \ left \ Vert \ mathbf {\ dot {A}} \ right \ Vert ^ {2} + \ tfrac {1} {2} c ^ {2} \ sum ^ {k = 3} _ {k = 1} \ left [\ frac {\ partial \ mathbf {A}} {\ partial x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} \ right] + \ frac {\ mathbf {j} \ boldsymbol {\ cdot} \ mathbf {A}} {\ epsilon_ {0}}
\ tag {008a} \\
\ mathcal {L} & = \ tfrac {1} {2} \ Vert \ boldsymbol {\ nabla} \ phi \ Vert ^ {2} - \ frac {\ rho \ phi} {\ epsilon_ {0}} + \ underbrace {\ boldsymbol {\ nabla} \ phi \ boldsymbol {\ cdot} \ mathbf {\ dot {A}} + \ tfrac {1} {2} \ left \ Vert \ mathbf {\ dot {A}} \ right \ Vert ^ {2} + \ tfrac {1} {2} c ^ {2} \ sum ^ {k = 3} _ {k = 1} \ left [\ frac {\ partial \ mathbf {A}} {\ partial x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} \ droite] + \ frac {\ mathbf {j} \ boldsymbol {\ cdot} \ mathbf {A}} {\ epsilon_ {0}}} _ {\ mathcal {L} _ {\ mathbf {A}} = \ text { par rapport à} \ mathbf {A}}
\ tag {008b}
\ end {align}
La partie $ \: \ mathcal {L} _ {\ phi} \: $ de la densité contient tous les termes $ \: \ phi $ et participera raisonnablement seule à la dérivation de l'équation de Maxwell (001c) à partir de l'équation d'Euler-Lagrange (002) par rapport à $ \: \ eta_ {4} = \ phi \: $. La partie $ \: \ mathcal {L} _ {\ mathbf {A}} \: $ de la densité contient tous les termes $ \: \ mathbf {A} $ - et participera raisonnablement seule à la dérivation de l'équation de Maxwell ( 001b) des équations d'Euler-Lagrange (002) par rapport à $ \: \ eta_ {1}, \ eta_ {2}, \ eta_ {3} = A_ {1}, A_ {1}, A_ {3} \ : $. Notez le terme courant $ \: \ boldsymbol {\ nabla} \ phi \ boldsymbol {\ cdot} \ mathbf {\ dot {A}} \: $ des parties $ \: \ mathcal {L} _ {\ phi}, \ mathcal {L} _ {\ mathbf {A}} \: $.
L'équation d'Euler-Lagrange par rapport à $ \: \ eta_ {4} = \ phi \: $ est:
\ begin {équation}
\ dfrac {\ partial} {\ partial t} \ overbrace {\ left (\ dfrac {\ partial \ mathcal {L}} {\ partial \ dot {\ phi}} \ right)} ^ {0} + \ nabla \ boldsymbol {\ cdot} \ overbrace {\ left [\ dfrac {\ partial \ mathcal {L}} {\ partial \ left (\ boldsymbol {\ nabla} \ phi \ right)} \ right]} ^ {\ boldsymbol {\ nabla} \ phi + \ mathbf {\ dot {A}}} - \ overbrace {\ frac {\ partial \ mathcal {L}} {\ partial \ phi}} ^ {- \ frac {\ rho} {\ epsilon_ {0 }}} = 0
\ tag {009}
\ end {équation}
ou
\ begin {équation}
\ nabla \ boldsymbol {\ cdot} \ underbrace {\ left (- \ boldsymbol {\ nabla} \ phi - \ frac {\ partial \ mathbf {A}} {\ partial t} \ right)} _ {\ mathbf {E }} = \ frac {\ rho} {\ epsilon_ {0}}
\ tag {010}
\ end {équation}
c'est l'équation de Maxwell (001c)
\ begin {équation}
\ nabla \ boldsymbol {\ cdot} \ mathbf {E} = \ frac {\ rho} {\ epsilon_ {0}}
\ tag {001c}
\ end {équation}
Pour dériver l'équation de Maxwell (001b), nous l'exprimons à l'aide des équations (005) en termes de composantes potentielles à 4 vecteurs $ \: A_ {1}, \: A_ {2}, \: A_ {3}, \ phi \: $:
\ begin {équation}
\ boldsymbol {\ nabla} \ boldsymbol {\ times} \ left (\ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right) = \ mu_ {0} \ mathbf {j} + \ frac { 1} {c ^ {2}} \ frac {\ partial} {\ partial t} \ left (- \ boldsymbol {\ nabla} \ phi - \ frac {\ partial \ mathbf {A}} {\ partial t} \ droite)
\ tag {011}
\ end {équation}
Utiliser l'identité
\ begin {équation}
\ boldsymbol {\ nabla} \ boldsymbol {\ times} \ left (\ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right) = \ boldsymbol {\ nabla} \ left (\ nabla \ boldsymbol { \ cdot} \ mathbf {A} \ right) - \ nabla ^ {2} \ mathbf {A}
\ tag {012}
\ end {équation}
l'équation (011) donne
\ begin {équation}
\ frac {1} {c ^ {2}} \ frac {\ partial ^ {2} \ mathbf {A}} {\ partial t ^ {2}} - \ nabla ^ {2} \ mathbf {A} + \ boldsymbol {\ nabla} \ left (\ nabla \ boldsymbol {\ cdot} \ mathbf {A} + \ frac {1} {c ^ {2}} \ frac {\ partial \ phi} {\ partial t} \ right) = \ mu_ {0} \ mathbf {j}
\ tag {013}
\ end {équation}
Le composant $ \: k $ de l'équation (013) est exprimé correctement pour ressembler à une équation d'Euler-Lagrange comme suit:
\ begin {équation}
\ dfrac {\ partial} {\ partial t} \ left (\ frac {\ partial \ mathrm {A} _ {k}} {\ partial t} + \ frac {\ partial \ phi} {\ partial x_ {k} } \ right) + \ nabla \ boldsymbol {\ cdot} \ left [c ^ {2} \ left (\ frac {\ partial \ mathbf {A}} {\ partial x_ {k}} - \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ right) \ right] - \ frac {\ mathrm {j} _ {k}} {\ epsilon_ {0}} = 0
\ tag {014}
\ end {équation}
Il suffit d'atteindre au-dessus de l'eq. (014) de l'équation d'Euler-Lagrange (002) avec respect $ \: \ eta_ {k} = A_ {k}, \: \: k = 1,2,3 \: $:
\ begin {équation}
\ dfrac {\ partial} {\ partial t} \ left (\ dfrac {\ partial \ mathcal {L}} {\ partial \ dot {A} _ {k}} \ right) + \ nabla \ boldsymbol {\ cdot} \ left [\ dfrac {\ partial \ mathcal {L}} {\ partial \ left (\ boldsymbol {\ nabla} A_ {k} \ right)} \ right] - \ frac {\ partial \ mathcal {L}} { \ partial A_ {k}} = 0
\ tag {015}
\ end {équation}
Maintenant
\ begin {équation}
\ dfrac {\ partial \ mathcal {L}} {\ partial \ dot {A} _ {k}} = \ dfrac {\ partial} {\ partial \ dot {A} _ {k}} \ left (\ boldsymbol { \ nabla} \ phi \ boldsymbol {\ cdot} \ mathbf {\ dot {A}} + \ tfrac {1} {2} \ left \ Vert \ mathbf {\ dot {A}} \ right \ Vert ^ {2} \ right) = \ frac {\ partial \ phi} {\ partial x_ {k}} + \ frac {\ partial \ mathrm {A} _ {k}} {\ partial t}
\ tag {016a}
\ end {équation}
\ begin {équation}
\ frac {\ partial \ mathcal {L}} {\ partial A_ {k}} = \ frac {\ partial} {\ partial A_ {k}} \ left (\ frac {\ mathbf {j} \ boldsymbol {\ cdot } \ mathbf {A}} {\ epsilon_ {0}} \ right) = \ frac {\ mathrm {j} _ {k}} {\ epsilon_ {0}}
\ tag {016b}
\ end {équation}
et
\ begin {équation}
\ dfrac {\ partial \ mathcal {L}} {\ partial \ left (\ boldsymbol {\ nabla} A_ {k} \ right)} = \ dfrac {\ partial} {\ partial \ left (\ boldsymbol {\ nabla} A_ {k} \ right)} \ left (\ tfrac {1} {2} c ^ {2} \ sum ^ {k = 3} _ {k = 1} \ left [\ frac {\ partial \ mathbf {A }} {\ partial x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} \ right] \ right) = c ^ {2} \ left (\ frac {\ partial \ mathbf {A}} {\ partial x_ {k}} - \ boldsymbol {\ nabla} \ mathrm {A } _ {k} \ droite)
\ tag {016c}
\ end {équation}
La dernière équation de (016c) est valide en raison de l'identité (Id-02) prouvée dans 2. Section des identités:
\ begin {équation}
\ dfrac {\ partial \ left (\ left | \! \ left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} \ right)} { \ partial \ left (\ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ right)} = \ dfrac {\ partial} {\ partial \ left (\ boldsymbol {\ nabla} \ mathrm {A} _ { k} \ right)} \ left (\ sum ^ {k = 3} _ {k = 1} \ left [\ frac {\ partial \ mathbf {A}} {\ partial x_ {k}} \ boldsymbol {\ cdot } \ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} \ right] \ right) = 2 \ left (\ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ frac {\ partial \ mathbf {A}} {\ partial x_ {k}} \ right)
\ tag {Id-02}
\ end {équation}
En utilisant les expressions des équations (016), l'équation d'Euler-Lagrange (015) donne (014) et donc l'équation de Maxwell (001b).
2. Section des identités
Si $ \: \ mathbf {A} = \ left (\ mathrm {A} _ {1}, \ mathrm {A} _ {2}, \ mathrm {A} _ {3} \ right) \: $ est un fonction vectorielle des coordonnées cartésiennes $ \: \ left (x_ {1}, x_ {2}, x_ {3} \ right) \: $ puis
\ begin {équation}
\ left \ Vert \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right \ Vert ^ {2} \ equiv \ sum ^ {k = 3} _ {k = 1} \ left [\ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} - \ dfrac {\ partial \ mathbf {A}} {\ partial x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol { \ nabla} \ mathrm {A} _ {k} \ right]
\ tag {Id-01}
\ end {équation}
et
\ begin {équation}
\ dfrac {\ partial \ left (\ left | \! \ left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} \ right)} { \ partial \ left (\ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ right)} = \ dfrac {\ partial} {\ partial \ left (\ boldsymbol {\ nabla} \ mathrm {A} _ { k} \ right)} \ left (\ sum ^ {k = 3} _ {k = 1} \ left [\ frac {\ partial \ mathbf {A}} {\ partial x_ {k}} \ boldsymbol {\ cdot } \ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} \ right] \ right) = 2 \ left (\ boldsymbol {\ nabla} \ mathrm {A} _ {k} - \ frac {\ partial \ mathbf {A}} {\ partial x_ {k}} \ right)
\ tag {Id-02}
\ end {équation}
où la dérivée fonctionnelle du côté gauche est définie comme
\ begin {équation}
\ dfrac {\ partial \ left (\ left | \! \ left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} \ right)} { \ partial \ left (\ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ right)} \ equiv \ left [\ dfrac {\ partial \ left (\ left | \! \ left | \ boldsymbol {\ nabla } \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} \ right)} {\ partial \ left (\ dfrac {\ partial \ mathrm {A} _ {k}} { \ partial x_ {1}} \ right)}, \ dfrac {\ partial \ left (\ left | \! \ left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} \ right)} {\ partial \ left (\ dfrac {\ partial \ mathrm {A} _ {k}} {\ partial x_ {2}} \ right)}, \ dfrac {\ partial \ left (\ left | \! \ left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} \ right)} {\ partial \ left ( \ dfrac {\ partial \ mathrm {A} _ {k}} {\ partial x_ {3}} \ right)} \ right]
\ tag {Id-03}
\ end {équation}
Preuve de l'équation (Id-01):
\ begin {eqnarray *}
&& \ left | \! \ Left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} = \ left (\ frac {\ partial A_ {3}} {\ partial x_ {2} } - \ frac {\ partial A_ {2}} {\ partial x_ {3}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {1}} {\ partial x_ {3}} - \ frac {\ partial A_ {3}} {\ partial x_ {1}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {2}} {\ partial x_ {1}} - \ frac {\ partial A_ {1}} {\ partial x_ {2}} \ right) ^ {2} \\
% ----------------------------------------
& = & \ left [\ left (\ frac {\ partial A_ {1}} {\ partial x_ {2}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {1}} {\ partial x_ {3}} \ right) ^ {2} \ right] + \ left [\ left (\ frac {\ partial A_ {2}} {\ partial x_ {1}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {2}} {\ partial x_ {3}} \ right) ^ {2} \ right] + \ left [\ left (\ frac {\ partial A_ {3}} {\ partial x_ {1}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {3}} {\ partial x_ {2}} \ right) ^ {2} \ right] \\
% ----------------------------------------
&&-2 \ left [\ frac {\ partial A_ {1}} {\ partial x_ {2}} \ frac {\ partial A_ {2}} {\ partial x_ {1}} + \ frac {\ partial A_ { 2}} {\ partial x_ {3}} \ frac {\ partial A_ {3}} {\ partial x_ {2}} + \ frac {\ partial A_ {3}} {\ partial x_ {1}} \ frac {\ partial A_ {1}} {\ partial x_ {3}} \ right] \\
% ----------------------------------------
& = & \ left [\ left (\ frac {\ partial A_ {1}} {\ partial x_ {1}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {1}} {\ partial x_ {2}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {1}} {\ partial x_ {3}} \ right) ^ {2} \ right] + \ left [\ left (\ frac {\ partial A_ {2}} {\ partial x_ {1}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {2}} {\ partial x_ {2}} \ droite) ^ {2} + \ gauche (\ frac {\ partial A_ {2}} {\ partial x_ {3}} \ droite) ^ {2} \ droite] \\
% ----------------------------------------
&& + \ left [\ left (\ frac {\ partial A_ {3}} {\ partial x_ {1}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {3}} {\ partial x_ {2}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {3}} {\ partial x_ {3}} \ right) ^ {2} \ right] - \ left [\ left ( \ frac {\ partial A_ {1}} {\ partial x_ {1}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {2}} {\ partial x_ {2}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {3}} {\ partial x_ {3}} \ right) ^ {2} \ right] \\
% ----------------------------------------
&&-2 \ left [\ frac {\ partial A_ {1}} {\ partial x_ {2}} \ frac {\ partial A_ {2}} {\ partial x_ {1}} + \ frac {\ partial A_ { 2}} {\ partial x_ {3}} \ frac {\ partial A_ {3}} {\ partial x_ {2}} + \ frac {\ partial A_ {3}} {\ partial x_ {1}} \ frac {\ partial A_ {1}} {\ partial x_ {3}} \ right] \\
% ----------------------------------------
& = & \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {1} \ Vert ^ {2} + \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {2} \ Vert ^ {2} + \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {3} \ Vert ^ {2} - \ left (\ frac {\ partial A_ {1}} {\ partial x_ {1}} \ frac {\ partial A_ {1}} {\ partial x_ {1}} + \ frac {\ partial A_ {2}} {\ partial x_ {1}} \ frac {\ partial A_ {1}} {\ partial x_ {2} } + \ frac {\ partial A_ {3}} {\ partial x_ {1}} \ frac {\ partial A_ {1}} {\ partial x_ {3}} \ right) \\
% ----------------------------------------
&&- \ left (\ frac {\ partial A_ {1}} {\ partial x_ {2}} \ frac {\ partial A_ {2}} {\ partial x_ {1}} + \ frac {\ partial A_ {2 }} {\ partial x_ {2}} \ frac {\ partial A_ {2}} {\ partial x_ {2}} + \ frac {\ partial A_ {3}} {\ partial x_ {2}} \ frac { \ partial A_ {2}} {\ partial x_ {3}} \ right) - \ left (\ frac {\ partial A_ {1}} {\ partial x_ {3}} \ frac {\ partial A_ {3}} {\ partial x_ {1}} + \ frac {\ partial A_ {2}} {\ partial x_ {3}} \ frac {\ partial A_ {3}} {\ partial x_ {2}} + \ frac {\ partial A_ {3}} {\ partial x_ {3}} \ frac {\ partial A_ {3}} {\ partial x_ {3}} \ right) \\
% ----------------------------------------
& = & \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {1} \ Vert ^ {2} + \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {2} \ Vert ^ {2} + \ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {3} \ Vert ^ {2} - \ frac {\ partial \ mathbf {A}} {\ partial x_ {1}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {1} - \ frac {\ partial \ mathbf {A}} {\ partial x_ {2}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm { A} _ {2} - \ frac {\ partial \ mathbf {A}} {\ partial x_ {3}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {3} \\
% ----------------------------------------
& = & \ sum ^ {k = 3} _ {k = 1} \ left [\ Vert \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ Vert ^ {2} - \ frac {\ partial \ mathbf {A}} {\ partial x_ {k}} \ boldsymbol {\ cdot} \ boldsymbol {\ nabla} \ mathrm {A} _ {k} \ right]
\ end {eqnarray *}
Preuve de l'équation (Id-02):
De l'équation
\ begin {eqnarray *}
&& \ left | \! \ Left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} = \ left (\ frac {\ partial A_ {3}} {\ partial x_ {2} } - \ frac {\ partial A_ {2}} {\ partial x_ {3}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {1}} {\ partial x_ {3}} - \ frac {\ partial A_ {3}} {\ partial x_ {1}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {2}} {\ partial x_ {1}} - \ frac {\ partial A_ {1}} {\ partial x_ {2}} \ right) ^ {2} \\
% ----------------------------------------
& = & \ left [\ left (\ frac {\ partial A_ {1}} {\ partial x_ {2}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {1}} {\ partial x_ {3}} \ right) ^ {2} \ right] + \ left [\ left (\ frac {\ partial A_ {2}} {\ partial x_ {1}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {2}} {\ partial x_ {3}} \ right) ^ {2} \ right] + \ left [\ left (\ frac {\ partial A_ {3}} {\ partial x_ {1}} \ right) ^ {2} + \ left (\ frac {\ partial A_ {3}} {\ partial x_ {2}} \ right) ^ {2} \ right] \\
% ----------------------------------------
&&-2 \ left [\ frac {\ partial A_ {1}} {\ partial x_ {2}} \ frac {\ partial A_ {2}} {\ partial x_ {1}} + \ frac {\ partial A_ { 2}} {\ partial x_ {3}} \ frac {\ partial A_ {3}} {\ partial x_ {2}} + \ frac {\ partial A_ {3}} {\ partial x_ {1}} \ frac {\ partial A_ {1}} {\ partial x_ {3}} \ right]
\ end {eqnarray *}
nous avons
\ begin {eqnarray *}
\ dfrac {\ partial \ left (\ left | \! \ left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} \ right)} { \ partial \ left (\ dfrac {\ partial \ mathrm {A} _ {1}} {\ partial x_ {1}} \ right)} & = & 0 = 2 \ left (\ dfrac {\ partial \ mathrm {A } _ {1}} {\ partial x_ {1}} - \ dfrac {\ partial \ mathrm {A} _ {1}} {\ partial x_ {1}} \ right) \\
\ dfrac {\ partial \ left (\ left | \! \ left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} \ right)} { \ partial \ left (\ dfrac {\ partial \ mathrm {A} _ {1}} {\ partial x_ {2}} \ right)} & = & 2 \ left (\ dfrac {\ partial \ mathrm {A} _ {1}} {\ partial x_ {2}} - \ dfrac {\ partial \ mathrm {A} _ {2}} {\ partial x_ {1}} \ right) \\
\ dfrac {\ partial \ left (\ left | \! \ left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} \ right)} { \ partial \ left (\ dfrac {\ partial \ mathrm {A} _ {1}} {\ partial x_ {3}} \ right)} & = & 2 \ left (\ dfrac {\ partial \ mathrm {A} _ {1}} {\ partial x_ {3}} - \ dfrac {\ partial \ mathrm {A} _ {3}} {\ partial x_ {1}} \ right)
\ end {eqnarray *}
Alors
\ begin {équation *}
\ dfrac {\ partial \ left (\ left | \! \ left | \ boldsymbol {\ nabla} \ boldsymbol {\ times} \ mathbf {A} \ right | \! \ right | ^ {2} \ right)} {\ partial \ left (\ boldsymbol {\ nabla} \ mathrm {A} _ {1} \ right)} = 2 \ left (\ boldsymbol {\ nabla} \ mathrm {A} _ {1} - \ frac {\ partial\ mathbf {A}} {\ partial x_ {1}} \ right)
\ end {équation *}
prouvant l'équation (Id-02) pour $ \: k = 1 \: $ et de même pour les deux autres composantes $ \: k = 2,3 $.